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Outline

Objective

• Present physical modelling baseline and implementation details of multi-phase and
free surface algorithms

Topics

1. Overview of multi-phase modelling: Levels of approximation

2. Eulerian multi-phase flow model

3. Volume-of-Fluid (VOF) flow model

4. Thin liquid film model

5. Lagrangian particle tracking: Discrete particle model

6. Free surface tracking model
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Multi-Phase Flow Modelling

Physical Modelling of Multi-Phase Flows

• Presence of multiple phases in the domain of interest. Inter-phase coupling is of
primary interest: momentum transfer between phases

• Phases described as a continuous phase (or background phase) and a
dispersed phase

• Levels of approximation: Coupled Approach
◦ Medium volume fraction: Euler-Euler approach . Phases are considered as

inter-penetrating continua occupying the same volume. Equations are solved
in a fully coupled manner in Eulerian formulation

◦ Low volume fraction: Euler-Lagrange approach . Continuous phase is
treated in the Eulerian manner, while the dispersed phase is represented by a
population of discrete parcels tracked in a Lagrangian manner

◦ Free surface flow model is a special case of Euler-Euler model, with a single
momentum equation and no phase inter-penetration. This is the only reliable
approach for high volume fraction

• Levels of approximation: Decoupled Approach
◦ Lagrangian particle tracking with uni-directional momentum transfer

◦ Wall film model: liquid transport along a curved surface in 3-D
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Eulerian Multi-Phase Model

Eulerian Multi-Phase Model

• The system is considered as two inter-penetrating continua filling the
computational domain

• Phase concentration followed by solving the volume fraction equation for αφ,
which is derived from dispersed phase continuity

• Each phase is represented by its momentum equation. Phases exchange
momentum in a two-way manner: inter-phase lift and drag terms

• Pressure is considered to be shared between phases

• Equation set derived using conditional averaging technique, (Dopazo, 1977)
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Eulerian Multi-Phase Model

Equation set for Eulerian Multi-Phase Flow

• Phase continuity equation

∂αφ

∂t
+∇•(uφαφ) = 0

• Phase momentum equation

∂(αφuφ)

∂t
+∇•(αφuφuφ) +∇•(αφR

eff
φ ) = −

αφ

ρφ
∇p+ αφg +

Mφ

ρφ

• Defining volume velocity as a sum of phase velocities

u =
∑

φ

αφuφ

• Volume continuity equation
∇•u = 0
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Eulerian Multi-Phase Model

Eulerian Multi-Phase Model

• Main problem in derivation is calculating multiple uφ from a single pressure
equation: one pressure provides a single set of fluxes

• Solution: reformulated phase fraction equation (Rusche, 2003). Dropping
subscript and reducing to a two-phase system for simplicity

∂α

∂t
+∇•(uα) +∇•[(uα − uβ)α (1− α)] = 0

The final term contains relative phase velocity and appears on the interface

• Reformulated momentum equation also uses volumetric velocity in the convection
term, avoiding issues with interpolation of phase fraction

• Partial elimination of drag terms for stability of momentum coupling
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Eulerian Multi-Phase Model

Example: Bubble Plume

• Bubble column experiment:
Gomes et al. 1998

• Air bubbles are injected at bottom
plate. Maximum flow velocity is
larger than injection velocity
because of recirculation

• Cases contains free surface:
need to handle α = 0 condition in
the equation set

• Simulations: Henrik Rusche, PhD
and OpenFOAM tutorial
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Free Surface Flow Modelling

Volume-of-Fluid Model

• Volume of Fluid Model : variant of multi-phase model preserving phase interface

• Immiscible condition combines momentum equations: no inter-penetrating
continua, no inter-phase drag terms

• Formulation follows Eulerian multi-phase model, but combines momentum
equations

• Phase continuity equation with volume fraction variable γ

∂γ

∂t
+∇•(uγ) = 0

• Combined momentum equation

∂(ρu)

∂t
+∇•(ρuu)−∇•σ = −∇p+ ρf + σκ∇γ

Note the presence of surface tension term , depending on curvature of free
surface. Curvature is calculated from γ field
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Free Surface Flow Model

Free Surface Flow Modelling

• Phases are considered a single continuum, with jump in properties at the interface

u = γu1 + (1− γ)u2

ρ = γρ1 + (1− γ)ρ2

ν = γν1 + (1− γ)ν2

Numerical Considerations: Sharp Interface

• Preserving sharpness of free surface is paramount

◦ Compressive numerics on ∇•(uγ) term: Onno Ubbink PhD, 1997. Problems
with parasitic velocities and dominant surface tension

◦ Relative velocity formulation , Rusche PhD 2003: use the Eulerian
two-phase form of the phase fraction equation, but manufacture relative
velocity term

∂α

∂t
+∇•(uα) +∇•[ur α (1− α)] = 0

where ur is a function of interface normal ∇γ
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Free Surface Flow Model

Numerical Considerations: Pressure Handling

• Pressure field contains several tricky terms

◦ Gravity contribution: hydrostatic pressure from ρf

◦ Surface tension term: in distributed form σκ∇γ

• To ensure smooth numerics, both terms are removed from momentum equation
and built into the pressure. This replaces static pressure with its dynamic
(piezometric) equivalent; static pressure can be recovered separately

Numerical Considerations: Surface Curvature and Surface Tension

• Surface curvature calculated from volume fraction gradient

κ = ∇•

(

∇γ

|∇γ|

)

• Distributed form of surface tension pressure jump

∫

S(t)
σκ′n′δ(x− x′) dS ≈ σκ∇γ
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Free Surface Flow Model

Examples

• Efficient handling of interface breakup

• Accurate handling of dominant surface tension: no parasitic velocity

• OpenFOAM solver: interFoam , rasInterFoam , no modifications

Ink-Jet Printer Nozzle, d = 20µm: Breakup Under Dominant Surface Tension

Complex Surface Breakup Phenomena: Sloshing and wet wall impact
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Free Surface Flow Model

Examples: LES of a Diesel Injector

• Injection of Diesel fuel into the atmosphere and subsequent breakup

• d = 0.2mm, high velocity and surface tension

• Mean injection velocity: 460m/s injected into air, 5.2MPa, 900K

• 1.2 to 8 million cells, aggressive local mesh refinement

• 50k time-steps, 6µs initiation time, 20µs averaging time

• OpenFOAM solver: lesInterFoam , no modifications
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Free Surface Flow Model

Examples: Three-Phase Free Surface Flow in a Tundish

• 3 phases with extreme density ratio: liquid steel, liquid slag, air (7000:2500:1)

• Similar viscosity ratio, probably requires a temperature-dependent model

• Note the presence of multiple phase-to-phase interfaces: using consistent
discretisation across phase γ equations

• Simultaneous filling and pouring with large outlet velocity

• Temperature-dependent properties of slag and steel
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Dynamic Mesh: Floating Body

Example: Single Floating Body in Free Surface Flow (VOF)

• Single phase VOF free surface flow model with accurate pressure reconstruction

• 6-DOF force balance for solid body motion: solving an ODE

• Variable diffusivity Laplacian motion solver with 6-DOF boundary motion as the
boundary condition condition

Problem Setup

1. Specify mesh, material properties and initial + boundary flow conditions

2. Dynamic mesh type: sixDofMotion. Mesh holds floatingBody objects

3. A floating body holds 6-DOF parameters: mass, moment of inertia, support, forces

4. Flow solver only sees a dynamicMesh: encapsulated motion
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Floating Body Simulations

Multiple Floating Bodies

• Problem setup: as above, but with multiple bodies ⌣̈

• Example: simulation of two bodies in close proximity with different distance

• Elastic support for each boat in the x-direction with linear spring and damping;
minor elastic support in the y-direction

• Automatic mesh motion shows its use: adding constrained components is trivial

• Extensive validation effort under way in collaboration with clients and University
research groups
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Floating Body Simulations

Capsizing Body with Topological Changes or GGI

• Full capsize of a floating body cannot be handled without topology change

• Mesh motion is decomposed into translational and rotational component

◦ External mesh performs only translational motion

◦ Rotation on capsize accommodated by a GGI interface

• Automatic motion solver handles the decomposition, based on 6-DOF solution

• Mesh inside of the sphere is preserved: boundary layer resolution

• Precise handling of GGI interface is essential: boundedness and mass
conservation for the VOF variable must be preserved
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Liquid Film Model

• Model developed for cases of thin film, where film thickness is small compared to
other geometrical dimensions

• Equations are derived prescribing a velocity profile across film thickness and
integrating conservation equations over the film

Ss

S fs

Vfs
Sw

h
m n

V

• Working variables

◦ Film thickness h, derived from mass conservation and handling pressure

◦ Mean film velocity V

• Equation set solved in 2-D, accounting for gravity, surface tension and surface
curvature; shear stress on the wall and free surface of liquid film are taken into
account as area-based terms
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Liquid Film Model

Equation Set of a This Liquid Film Model

• Continuity equation
∂h

∂t
+∇s • (v̄h) =

ṁS

ρL
;

• Momentum equation

∂(hv̄)

∂t
+∇s • (hv̄v̄ +C) =

1

ρL

(

τfs − τw

)

+ hgt −
h

ρL
∇spL +

1

ρL
S̄v ;

• Shear stress terms and the convection term correction tensor C are calculated
from prescribed velocity profile

• Liquid film pressure
pL = pg + pd + pσ + ph

where
◦ pg is the gas pressure

◦ pd is the droplet impact pressure

◦ pσ is capillary (or Laplace) pressure
◦ ph is hydrostatic pressure

Multi-Phase and Free Surface Flows – p. 18



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Liquid Film Model

Solution of Surface-Based Equations: Finite Area Method

• Liquid film model: shallow water model on a curved surface with surface tension

• Mesh organisation attached to volumetric FVM solver: easy coupling

• Full parallelisation at equation level, following FVM domain decomposition

• Example: collapse of five surface blobs under surface tension and gravity
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Lagrangian Particle Tracking

Integration of Discrete Phase Equations

• Momentum equation for a single droplet in Lagrangian frame

md

dud

dt
= Fd + Fp + Fv + Fb

◦ Fd is the drag force:

Fd =
1

2
CdρAdurel|urel|

◦ Fp is the pressure force:
Fp = −Vd∇p

◦ Fa is the virtual mass force:

Fp = −CaρVd

durel

dt

◦ Fb is the body force, e.g. gravity

• Droplet position is integrated by tracking: dxd

dt
= ud
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Lagrangian Particle Tracking

Euler-Lagrange Multi-Phase Model

• Continuous phase represented by Euler equations, assuming low volume fraction
of the dispersed phase (< 10%)

• Dispersed phase modelled by tracking particles in a mesh, with momentum
exchange between the two

• In continuous phase equations it is assumed that the dispersed phase is
sufficiently dilute to neglect dispersed phase volume fraction effects

• Coupling appears in the continuous momentum equation:

∂u

∂t
+∇•(uu)−∇•σ = −∇p+ sud

• sud is the total momentum exchange between the continuous and discrete phase.
This is calculated on a per-cell basis:

sud =
1

V

∑

d in V

[

md

ud − uo
d

∆t
− Fp − Fb

]

• Effective viscosity and source/sink term volume correction is also used
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Surface Soiling Simulation

Volume-Surface-Lagrangian Simulation

• Main coupling challenge is to
implement all components
side-by-side and control their
interaction

• Lagrangian tracking uses an ODE
solver: block coupling at matrix
level is not needed or cannot be
used as before

• Close coupling is achieved by
sub-cycling or iterations over the
block system for each time-step

• In terms of software architecture, coupling of volumetric, surface and Lagrangian
models is easier to handle

• If the model-to-model coupling fails, options on improving the stability are
considerably limited

• Known pathological cases: simulating spray penetration : adaptive mesh
refinement solves the problem!
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Free Surface Tracking

Free Surface Tracking Simulations

• A free surface flow system can be viewed as two sets of fluid flow equations
coupled at the surface. Surface conditions:

◦ Free surface is infinitely thin

◦ There is no flow through the free surface: fluids are separated

◦ Kinematic condition : Normal velocity component must be continuous across
the interface

◦ Dynamic condition : Forces acting on the fluid at the interface are in
equilibrium

• In practice, motion of one side and pressure from the other side will be exchanged
until both conditions are satisfied

• Free surface tracking may be interpreted as a FV simulation on a moving
deforming mesh, where the position of the free surface is a part of the solution and
not known in advance

• In practical simulations, only the surface deformation is known: the rest of the
mesh must accommodate boundary motion
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Free Surface Tracking

Hydrofoil Under A Free Surface

• Flow solver gives surface displacement

• Mesh adjusted to free surface position

Free-Rising Air Bubble with Surfactants

• Two meshes coupled on free surface

Single Solver, Complex Coupling

• FVM on moving meshes

• Automatic mesh motion

• FAM: Surface physics

rF

vF

vb = −vF

y

x

y′

x′

aF

o′SA

SB

o

Free

surface
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Summary

Free Surface Flow Modelling in OpenFOAM

• OpenFOAM provides several modelling paradigms for multi-phase and free
surface flows
◦ Eulerian multi-phase model for inter-penetrating continua

◦ Free surface VOF solver: volumetric surface capturing

◦ Free surface tracking model for wetted surfaces
◦ Lagrangian particle tracking: discrete particle model

◦ Free surface tracking model: mesh motion adheres to free surface position

• Customised solvers, coupling above models or acting zonally can be implemented
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