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What is Discretisation?

Numerical Discretisation Method

• Generic transport equation can very rarely be solved analytically: this is why we

resort to numerical methods

• Discretisation is a process of representing the differential equation we wish to

solve by a set of algebraic expressions of equivalent properties (typically a matrix)

• Two forms of discretisation operators. We shall use a divergence operator as an

example.

◦ Calculus. Given a vector field u, produce a scalar field of ∇•u

◦ Method. For a given divergence operator ∇•, create a set of matrix

coefficients that represent ∇•u for any given u

• The Calculus form can be easily obtained from the Method (by evaluating the

expression), but this is not computationally efficient
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Discretised Transport Equation

Discretisation Methodology: Polyhedral Finite Volume Method

1. We shall assemble the discretisation on a per-operator basis: visit each operator

in turn and describe a strategy for evaluating the term explicitly and discretising it

2. Describe space and time: a computational mesh for the spatial domain and

time-steps covering the time interval

3. Postulate spatial and temporal variation of φ required for a discrete representation

of field data

4. Integrate the operator over a cell

5. Use the spatial and temporal variation to interpret the operator in discrete terms
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Discretised Transport Equation

Representation of a Field Variable

• Equations we operate on work on fields: before we start, we need a discrete

representation of the field

• Main solution variable will be stored in cell centroid: collocated cell-centred finite
volume method. Boundary data will be stored on face centres of boundary faces

• For some purposes, e.g. face flux, different data is required – in this case it will be

a field over all faces in the mesh

• Spatial variation can be used for interpolation in general: post-processing tools

typically use point-based data.
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Nomenclature

Computational Cell

f

N

df

P

VP

x

y

z

sf

rP

• This is a convex polyhedral cell boundary be a set of convex polygons

• Point P is the computational point located at cell centroid xP . The definition of the

centroid reads:
∫

VP

(x− xP ) dV = 0
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Nomenclature

Computational Cell

• Cell volume is denoted by VP

• For the cell, there is one neighbouring cell across each face. Neighbour cell and

cell centre will be marked with N .

• The face centre f is defined in the equivalent manner, using the centroid rule:

∫

Sf

(x− xf ) dS = 0

• Delta vector for the face f is defined as

df = PN

• Face area vector sf is a surface normal vector whose magnitude is equal to the

area of the face. The face is numerically never flat, so the face centroid and area

are calculated from the integrals.

sf =

∫

Sf

n dS
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Nomenclature

Computational Cell

• The fact that the face centroid does not necessarily lay on the plane of the face is

not worrying: we are dealing with surface-integrated quantities. However, we shall

require the the cell centroid lays within the cell

• In practice, cell volume and face area calculated by decomposition into triangles

and pyramids

• Types of faces in a mesh

◦ Internal face, between two cells

◦ Boundary face, adjacent to one cell only and pointing outwards of the

computational domain

• When operating on a single cell, assume that all face area vectors sf point

outwards of cell P

• Discretisation is based on the integral form of the transport equation over each cell

∫

V

∂φ

∂t
dV +

∮

S

φ (n•u) dS −

∮

S

γ (n•∇φ) dS =

∫

V

Qv dV
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Spatial and Temporal Variation

Spatial Variation

• Postulating spatial variation of φ: second order discretisation in space

φ(x) = φP + (x− xP )•(∇φ)P

This expression is given for each individual cell. Here, φP = φ(xP ).

Temporal Variation

• Postulating linear variation in time: second order in time

φ(t+∆t) = φt +∆t

(

∂φ

∂t

)t

where φt = φ(t)

Polyhedral Mesh Support

• In FVM, we have specified the “shape function” without reference to the actual cell

shape (tetrahedron, prism, brick, wedge). The variation is always linear. Doing

polyhedral Finite Volume should be straightforward!
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Volume and Surface Integrals

Evaluating Volume Integrals

∫

V

φ dV =

∫

V

[φP + (x− xP )•(∇φ)P ] dV

= φP

∫

V

dV + (∇φ)P •

∫

V

(x− xP )dV

= φPVP

Evaluating Surface Integrals

• Surface integral splits into a sum over faces and evaluates in the same manner

∮

S

nφ dS =
∑

f

∫

Sf

nφf dSf =
∑

f

∫

Sf

n[φf + (x− xf )•(∇φ)f ] dSf

=
∑

f

sfφf

• Assumption of linear variation of φ and selection of P and f in the centroid creates

second-order discretisation
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Software Organisation

Cell and Face Addressing

• Assuming that φf depends on the values of φ in the two cells around the face, P

and N , let us attempt to calculate a surface integral for the complete mesh.

Attention will be given on how the mesh structure influences the algorithm

• Structured mesh. Introducing compass notation: East, West, North, South

• The index of E, W , N and S can be calculated from the index of P: n + 1, n - 1, n
+ colDim, n - colDim

PW E

N

S
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Software Organisation

Structured and Body-Fitted Mesh

• Looping structure

◦ Option 1: For all cells, visit East, West, North, South and sum up the values.

Not too good: each face value calculated twice. Also, poor optimisation for

vector computers we want to do a relatively short operation for lots and lots of

cells

◦ Option 2:

∗ For all cells, do East face and add to P and E
∗ For all cells, do North face and add to P and N
Better, but stumbles on the boundary. Nasty tricks, like “zero-volume

boundary cells” on the W and S side of the domain.

◦ OK, I can do a box. How about implementing a boundary condition: separate

discretisation on E, W, N and S boundary. Ugly and wasteful!

Finite Volume Discretisation with Polyhedral Cell Support – p. 11



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Software Organisation

Block Structured Mesh

• Same kind of looping as above

• On connections between blocks, the connectivity is no longer “regular”, e.g. on the

right side I can get a N cell of another block

• Solution: repeat the code for discretisation and boundary conditions for all possible

block-to-block connections

• Repeated code is very bad for your health: needs to be changed consistently,

much more scope for errors, boring and difficult to keep running properly.

Tetrahedral Mesh

• In a tetrahedral mesh we cannot calculate the neighbouring indices because the

mesh is irregular

• Cell-to-cell connectivity needs to be calculated during mesh generation or at the

beginning of the simulation and stored

• Example: for each tetrahedron, store 4 indices of neighbour cells across 4 faces in

order.
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Software Organisation

Unstructured Mesh

• We can treat a block structured mesh in the same manner: forget about blocks and

store neighbour indices for each cell. Much better: no code duplication

Mixed cell types

• Re-use the unstructured mesh idea, but with holes: a tetrahedron only has 4

neighbours and a brick has got six

◦ Option 1: For all cells, visit all neighbours. Whoops: short loop inside a long

loop AND all face values calculated twice

◦ Option 2:

∗ For all neighbours, up to max number of neighbours

∗ For all cells
∗ . . . do the work if there is a neighbour

Works, but not too happy: I have to check if the neighbour is present
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Software Organisation

Polyhedral Mesh: Face Addressing

• Thinking about the above, all I want to do is to visit all cell faces and then all

boundary faces. For internal face, do the operation and put the result into two cells

around the face

• Orient face from P to N : add to P and subtract from N (because the face area

vector points the wrong way)

• Addressing slightly different: for each internal face, record the left and right (owner

and neighbour) cell index. Owner will be the first one in the cell list

• Much cleaner, compact addressing, fast and efficient (some cache hit issues are

hidden but we can work on that)

• Most importantly, it no longer matters how many faces there is in the cell: nothing

special is required for polyhedral cells
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Gauss’ Theorem

Gauss’ Theorem in Finite Volume Discretisation

• Gauss’ theorem is a tool we will use for handing the volume integrals of divergence

and gradient operators

• Divergence form
∫

VP

∇•a dV =

∮

∂VP

ds•a

• Gradient form
∫

VP

∇φ dV =

∮

∂VP

dsφ

• Note how the face area vector operates from the same side as the gradient

operator: fits with our definition of the gradient of for a vector field

• In the rest of the analysis, we shall look at the problem face by face. A diagram of

a face is given below for 2-D. Working with vectors will ensure no changes are

required when we need to switch from 2-D to 3-D.
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Matrix Assembly

From Discretisation to Linear System of Equations

• Assembling the terms from the discretisation method: Thus, the value of the

solution in a point depends on the values around it: this is always the case. For

each computational point, we will create an equation

aP xP +
∑

N

aNxN = b

where N denotes the neighbourhood of a computational point

◦ Every time xP depends on itself, add contribution into aP

◦ Every time xN depends on itself, add contribution into aN

◦ Other contributions into b
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Linear System of Equations

Nomenclature

• Equations form a linear system or a matrix

[A][x] = [b]

where [A] contain matrix coefficients, [x] is the value of xP in all cells and [b] is the

right-hand-side

• [A] is potentially very big: N cells × N cells

• This is a square matrix: the number of equations equals the number of unknowns

• . . . but very few coefficients are non-zero. The matrix connectivity is always local,

potentially leading to storage savings if a good format can be found
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Implicit and Explicit Methods

Solution Advancement Method

• Explicit method: xn
P depends on the old neighbour values xo

N

◦ Visit each cell, and using available xo calculate

xn
P =

b−
∑

N aNxo
N

aP

◦ No additional information needed

◦ Fast and efficient; however, poses the Courant number limitation: the

information about boundary conditions is propagated very slowly and poses a

limitation on the time-step size

• Implicit method: xn
P depends on the new neighbour values xn

N

xn
P =

b−
∑

N aNxn
N

aP

◦ Each cell value of x for the “new” level depends on others: all equations need

to be solved simultaneously
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Operator Discretisation

Discretising Operators

• The Story So Far...

◦ Split the space into cells and time into time steps

◦ Assembled a discrete description of a continuous field variable

◦ Postulated spatial and temporal variation of the solution for second-order

discretisation

◦ Generated expressions for evaluation of volume and surface integrals

• We shall now use this to assemble the discretisation of the differential operators

1. Rate of change term

2. Gradient operator

3. Convection operator

4. Diffusion operators

5. Source and sink terms
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Temporal Derivative

First Derivative in Time

• Time derivative captures the rate-of-change of φ. We only need to handle the

volume integral.

• Defining time-step size ∆t

• tnew = told +∆t, defining time levels φn and φo

φo = φ(t = told)

φn = φ(t = tnew)

• Temporal derivative, first and second order approximation

∂φ

∂t
=

φn − φo

∆t

∂φ

∂t
=

3
2
φn − 2φo + 1

2
φoo

∆t
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Matrix Coefficients

First Derivative in Time

• Thus, with the volume integral:

∫

V

∂φ

∂t
dV =

φn − φo

∆t
VP

∫

V

∂φ

∂t
dV =

3
2
φn − 2φo + 1

2
φoo

∆t
VP

Temporal Derivative

• Calculus: given φn, φo and ∆t create a field of the time derivative of φ

• Method: matrix representation. Since ∂φ
∂t

in cell P depends on φP , the matrix will

only have a diagonal contribution and a source

◦ Diagonal coefficient: aP = VP
∆t

◦ Source contribution: rP = VP φo

∆t
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Gradient Calculation

Evaluating the Gradient

• How to evaluate a gradient of a given field: Gauss Theorem

∫

VP

∇φ dV =

∮

∂VP

dsφ

• Discretised form splits into a sum of face integrals

∮

S

nφ dS =
∑

f

sfφf

• It still remains to evaluate the face value of φ. Consistently with second-order

discretisation, we shall assume linear variation between P and N

φf = fxφP + (1− fx)φN

where fx = fN/PN

• Gradient evaluation almost exclusively used as a calculus operation
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Gradient Calculation

Other Forms of Gradient: Least Square

• Consider cell centre P and a cluster of points around it N . Fit a plane:

eN = φN − (φP + dN •(∇φ)P )

• Minimising the weighted error

e2P =
∑

N

(wNeN )2 where wN =
1

|dN |

yields a second-order least-square form of gradient:

(∇φ)P =
∑

N

w2
N G

−1
•dN (φN − φP )

• G is a 3× 3 symmetric matrix:

G =
∑

N

w2
N dNdN
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Gradient Calculation

Other Forms of Gradient: Cell- and Face-Limited Gradient

• Gradient reconstruction may lead to local over- or under-shoots in reconstructed

field:

minN (φN ) ≤ φP + dN •(∇φ)P ≤ maxN (φN )

• This is important for bounded variables, especially when gradients are used in

further discretisation or coupling terms

• Solution: based on the gradient, calculate min and max neighbourhood value and

apply gradient limiter to preserve bounds in cell centres

N1φ
P

P

N

N

N

N

3

2

5

4

d

φ
N
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Convection Operator

Convection Operator

• Convection term captures the transport by convective velocity

• Convection operator splits into a sum of face integrals (integral and differential

form)
∫

V

∇•(φu) dV =

∮

S

φ(n•u)dS

• Integration follows the same path as before

∫

V

∇•(φu) dV =

∮

S

φ(n•u)dS =
∑

f

φf (sf •uf ) =
∑

f

F φf

where φf is the face value of φ and

F = sf •uf

is the face flux: measure of the flow through the face

• In order to close the system, we need a way of evaluating φf from the cell values

φP and φN : face interpolation
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Convection Operator

Face Interpolation Scheme for Convection

• Simplest face interpolation: central differencing. Second-order accurate, but

causes oscillations

φf = fxφP + (1− fx)φN

• Upwind differencing: taking into account the transportive property of the term:

information comes from upstream. No oscillations, but smears the solution

φf = pos(F )φP + neg(F )φN or fx = pos(F )

• There exists a large number of schemes, trying to achieve good accuracy without

causing oscillations: e.g. TVD, and NVD families: φf = f(φP , φN , F, . . .)

U (far upwind) C (central upwind) f (face) D (downwind)

flux

Φ
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Convection Operator

Convection Discretisation

• In the convection term, φf depends on the values of φ in two computational points:

P and N .

• Note: F can be positive or negative!, depending on flow direction

• Therefore, the solution in P will depend on the solution in N and vice versa, which

means we’ve got an off-diagonal coefficient in the matrix. In the case of central

differencing on a uniform mesh, a contribution for a face f is

◦ Diagonal coefficient: aP = fx F ; for all faces aP =
∑

N fx F

◦ Off-diagonal coefficient: aN = (1− fx)F

◦ Source contribution: in our case, nothing. However, some other schemes may

have additional (gradient-based) correction terms

◦ Note that, in general the P -to-N coefficient will be different from the N -to-P

coefficient: the matrix is asymmetric

• Upwind differencing

◦ Diagonal coefficient: aP = max(F, 0)

◦ Off-diagonal coefficient: aN = min(F, 0)
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Diffusion Operator

Diffusion Operator

• Diffusion term captures the gradient transport

• Integration same as before

∫

V

∇•(γ∇φ) dV =

∮

S

γ(n•∇φ)dS =
∑

f

∫

Sf

γ(n•∇φ) dS

=
∑

f

γf sf •(∇φ)f

• γf evaluated from cell values using central differencing

• Evaluation of the face-normal gradient. If s and df = PN are aligned, use

difference across the face

sf •(∇φ)f = |sf |
φN − φP

|df |

• This is the component of the gradient in the direction of the df vector

• For non-orthogonal meshes, a correction term may be necessary
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Diffusion Operator

Matrix Coefficients

• For an orthogonal mesh, a contribution for a face f is

◦ Diagonal value: aP = −γf
|sf |

|df |
. For all faces aP = −

∑

N γf
|sf |

|df |

◦ Off-diagonal value: aN = γf
|sf |

|df |

◦ Source contribution: for orthogonal meshes, nothing. Non-orthogonal

correction will produce a source

• The P -to-N and N -to-P coefficients are identical: symmetric matrix. This is an

important characteristic of the diffusion operator

• For non-orthogonal meshes, a correction is added to compensate for the angle

between the face area and PN vectors

P Nd

f
s k

∆
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Diffusion Operator

Limiting Non-Orthogonal Correction in a Laplacian

• Decomposition of face gradient into “orthogonal component” and “non-orthogonal

correction” depends on mesh quality: mesh non-orthogonality is measured from

PN and sf

• Mathematically, a Laplacian is a perfect operator: smooth, bounded, self-adjoint.

Its discretisation yields a symmetric matrix

• In contrast, non-orthogonal correction is explicit, unbounded and unsigned

• Limited non-orthogonal correction: explicit part clipped to be smaller than its

implicit counterpart, base on the current solution

λ
|sf |

|df |
(φN − φP ) > kf •∇(φ)f

where λ is the limiter value
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Source and Sink Terms

Source and Sinks

• Source and sink terms are local in nature

∫

V

S dV = SVP

• In general, S may be a function of space and time, the solution itself, other

variables and can be quite complex. In complex physics cases, the source term

can carry the main interaction in the system. Example: complex chemistry

mechanisms. We shall for the moment consider only a simple case.

• Typically, linearisation with respect to φ is performed to promote stability and

boundedness

S(φ) = Su − Spφ

where Sp =
∂S(φ)
∂φ

and for cases where Sp > 0 (sink), treated separately

Matrix Coefficients

• Source and sink terms do not depend on the neighbourhood

◦ Diagonal value created for Sp < 0: “boosting diagonal dominance”

◦ Explicit source contribution: Su
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Numerical Boundary Conditions

Implementation of Boundary Conditions

• Boundary conditions will contribute the the discretisation through the prescribed

boundary behaviour

• Boundary condition is specified for the whole equation

• . . . but we will study them term by term to make the problem simpler
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Dirichlet Condition

Dirichlet Condition: Fixed Boundary Value

• Boundary condition specifies φf = φb

• Convection term: fixed contribution F φb. Source contribution only

• Diffusion term: need to evaluate the near-boundary gradient

n•(∇φ)b =
φb − φP

|db|

This produces a source and a diagonal contribution

• What about source, sink, rate of change?
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Neumann Condition

Neumann and Gradient Condition

• Boundary condition specifies the near-wall gradient n•(∇φ)b = gb

• Convection term: evaluate the boundary value of φ from the internal value and the

known gradient

φb = φP + db•(∇φ)b = φP + |db|gb

Use the evaluated boundary value as the face value. This creates a source and a

diagonal contribution

• Diffusion term: boundary-normal gb gradient can be used directly. Source

contribution only

Mixed Condition

• Combination of the above

• Very easy: α times Dirichlet plus (1− α) times Neumann

Geometric and Coupled Conditions

• Symmetry plane condition is enforces using the mirror-image of internal solution

• Cyclic and periodic boundary conditions couple near-boundary cells to cells on

another boundary
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Time Advancement

Advancing the Solution in Time

• Two basic types of time advancement: Implicit and explicit schemes. Properties of

the algorithm critically depend on this choice, but both are useful under given

circumstances

• There is a number of methods, with slightly different properties, e.g. fractional step

methods,

• Temporal accuracy depends on the choice of scheme and time step size

• Steady-state simulations

◦ If equations are linear, this can be solved in one go! (provided the

discretisation is linear as well!)

◦ For non-linear equations or special discretisation practices, relaxation

methods are used, which show characteristics of time integration (we are

free to re-define the meaning of time

Finite Volume Discretisation with Polyhedral Cell Support – p. 35



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Time Advancement

Explicit Schemes

• The algorithm uses the calculus approach, sometimes said to operate on residuals

• In other words, the expressions are evaluated using the currently available φ and

the new φ is obtained from the time term

• Courant number limit is the major limitation of explicit methods: information can

only propagate at the order of cell size; otherwise the algorithm is unstable

• Quick and efficient, no additional storage

• Very bad for elliptic behaviour

Implicit Schemes

• The algorithm is based on the method: each term is expressed in matrix form and

the resulting linear system is solved

• A new solution takes into account the new values in the complete domain: ideal for

elliptic problems

• Implicitness removed the Courant number limitation: we can take larger time-steps

• Substantial additional storage: matrix coefficients!
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Equation Discretisation

Assembling Equations

• The equation we are trying to solve is simply a collection of terms: therefore,

assemble the contribution from

• Initial condition. Specifies the initial distribution of φ

• . . . and we are ready to look at examples!

Examples: Convection Differencing Schemes

• Testing differencing schemes on standard profiles

• Simple second-order discretisation: upwind differencing, central differencing,

blended differencing, NVD schemes

• First-order scheme: Upwind differencing. Take into account the transport direction

• Exercise: now does all this relate to the discretisation of the Euler equation

described in the previous lectures?

Examples: Stability and Boundedness

• Positive and negative diffusion coefficient

• Temporal discretisation: first and second-order, implicit or explicit discretisation
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