
OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Object Orientation and C++:
An Introduction for CFD Specialists

Hrvoje Jasak

h.jasak@wikki.co.uk

Wikki Ltd, United Kingdom

Object Orientation and C++:An Introduction for CFD Specialists – p. 1



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Outline

Objective

• Quick overview of object orientation and generic programming in C++ on

CFD-related practical examples

Topics

• Classes: protecting your data

• Handling data: value, reference and pointer access

• Function and operator overloading

• Class derivation

• Virtual functions

• Templating: generic programming in C++

• Summary and further reading

Object Orientation and C++:An Introduction for CFD Specialists – p. 2



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Background

Rationale

• Current generation of CFD software has grown in size beyond expectations

• Addition of new functionality hampered by software complexity

• A new (development) engineer needs a minimum of 6-12 months training to

understand and develop isolated parts of software

• As a consequence of complexity, large percentage of development time is spent

on testing and validation: not productive and bug-prone

Major Problems

• Data is global and can be corrupted anywhere in the software

• Introduction of new components interferes with already implemented functionality

Solution: Divide and Conquer

• Separate software into manageable units

• Develop, test and deploy units in isolation

• Build complex system from simpler components

Each component consists of data and functions: a class (or object)

Object Orientation and C++:An Introduction for CFD Specialists – p. 3



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Object Orientation

Object-Oriented Software: Create a Language Suitable for the Problem

• Analysis of numerical simulation software through object orientation:

“Recognise main objects from the numerical modelling viewpoint”

• Objects consist of data they encapsulate and functions which operate on the data

Example: Sparse Matrix Class

• Data members: protected and managed

◦ Sparse addressing pattern (CR format, arrow format)

◦ Diagonal coefficients, off-diagonal coefficients

• Operations on matrices or data members: Public interface

◦ Matrix algebra operations: +,−, ∗, /,

◦ Matrix-vector product, transpose, triple product, under-relaxation

• Actual data layout and functionality is important only internally: efficiency

Example: Linear Equation Solver

• Operate on a system of linear equations [A][x] = [b] to obtain [x]

• It is irrelevant how the matrix was assembled or what shall be done with solution

• Ultimately, even the solver algorithm is not of interest: all we want is new [x]!

• Gauss-Seidel, AMG, direct solver: all answer to the same interface

Object Orientation and C++:An Introduction for CFD Specialists – p. 4



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Classes: Protecting Your Data

class vector

{

// Private data

//- Components

double V[3];

public:

// Component labeling enumeration

enum components { X, Y, Z };

// Constructors

//- Construct null

vector(){}

//- Construct given three scalars

vector(const double& Vx, const double& Vy, const double& Vz)

{

V[X] = Vx; V[Y] = Vy; V[Z] = Vz;

}

Object Orientation and C++:An Introduction for CFD Specialists – p. 5



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Classes: Protecting Your Data

// Destructor

˜vector();

// Member Functions

const word& name() const;

static const dimension& dimensionOfSpace();

const double& x() const { return V[X]; }

const double& y() const { return V[Y]; }

const double& z() const { return V[Z]; }

double& x() { return V[X]; }

double& y() { return V[Y]; }

double& z() { return V[Z]; }

// Member Operators

void operator=(const vector& v);

inline void operator+=(const vector&);

inline void operator-=(const vector&);

inline void operator*=(const scalar);

Object Orientation and C++:An Introduction for CFD Specialists – p. 6



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Classes: Protecting Your Data

// Friend Functions

friend vector operator+(const vector& v1, const vector& v2)

{

return vector(v1.V[X]+v2.V[X],v1.V[Y]+v2.V[Y],v1.V[Z]+v2.V[Z]);

}

friend double operator&(const vector& v1, const vector& v2)

{

return v1.V[X]*v2.V[X] + v1.V[Y]*v2.V[Y] + v1.V[Z]*v2.V[Z];

}

friend vector operatorˆ(const vector& v1, const vector& v2)

{

return vector

(

(v1.V[Y]*v2.V[Z] - v1.V[Z]*v2.V[Y]),

(v1.V[Z]*v2.V[X] - v1.V[X]*v2.V[Z]),

(v1.V[X]*v2.V[Y] - v1.V[Y]*v2.V[X])

);

}

};

Object Orientation and C++:An Introduction for CFD Specialists – p. 7



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Classes: Protecting Your Data

Vector Class: Summary

• Class is responsible for managing its own data: (x, y, z)

• Class provides interface for data manipulation; private data is accessible only from

within the class: data protection

• Vector class (code component) can be developed and tested in isolation

Manipulating Vectors

vector a, b, c;

vector area = 0.5*((b - a)ˆ(c - a));

Constant and Non-Constant Access

• Accessing a vector from another class

class cell

{

public:

const vector& centre() const;

};

• Cell class allows me to look at the vector but not to change it!

• First const promises not to change the vector

• Second promises not to change class object

Object Orientation and C++:An Introduction for CFD Specialists – p. 8



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Value, Pointer, Reference

Types of Data Access

• Pass by value: make a copy of local data. Changing a copy does not influence the

original, since it is a different instance

• Pass by const reference: Give read-only access to local data

• Pass by reference: Give read-write access to local data. This type of access

allows local value to be changed, usually changing the class

• Pointer handling: Instead of dealing with data, operative with memory locations

(addresses) where the data is stored

Constant and Non-Constant Access

• Pass-by-value and pass-by-reference: is the data being changed?

class cell

{

public:

vector centre() const;

vector* centrePtr();

vector& centre();

const vector& centre() const;

};

Object Orientation and C++:An Introduction for CFD Specialists – p. 9



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Value, Pointer, Reference

Return a Value, a Pointer or a Reference

• In actual compiler implementation, pointers and references are handled with the

same mechanism: memory address of object storage

• Dealing with pointers and protecting pointer data is cumbersome and ugly

class cell

{

public:

vector* centrePtr();

const vector const* centre() const;

};

cell c(...);

if (c.centrePtr() != NULL)

{

vector& ctr = *(c.centrePtr());

ctr += vector(3.3, 1, 1);

}

• Is the pointer set? Is it valid: check for NULL. Should I delete it?

• A reference is an “always on” pointer with object syntax. No checking required

Object Orientation and C++:An Introduction for CFD Specialists – p. 10



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Operator Overloading

Implementing the Same Operation on Different Types

• User-defined types (classes) should behave exactly like the “built-in” types

• Some operations are generic: e.g. magnitude: same name, different argument

label m = mag(-3);

scalar n = mag(3.0/m);

vector r(1, 3.5, 8);

scalar magR = mag(r);

• Warning: implicit type conversion is a part of this game! This allows C++ to

convert from some types to others according to specific rules

• Function or operator syntax

vector a, b;

vector c = 3.7*(a + b);

is identical to

vector c(operator*(3.7, operator+(a, b)));

• Operator syntax is regularly used because it looks nicer, but for the compiler both

are “normal” function calls

Object Orientation and C++:An Introduction for CFD Specialists – p. 11



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Class Derivation

Particle Class: Position and Location

• Position in space: vector = point

• Cell index, boundary face index, is on a boundary?

class particle

:

public vector

{

// Private data

//- Index of the cell it is

label cellIndex_;

//- Index of the face it is

label faceIndex_;

//- Is particle on boundary/outside domain

bool onBoundary_;

};

• is-a relationship: class is derived from another class

• has-a relationship: class contains member data

Object Orientation and C++:An Introduction for CFD Specialists – p. 12



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Virtual Functions

Implementing Boundary Conditions

• Boundary conditions represent a class of related objects, all doing the same job

◦ Hold boundary values and rules on how to update them

◦ Specify the boundary condition effect on the matrix

• . . . but each boundary condition does this job in it own specific way!

• Examples: fixed value (Dirichlet), zero gradient (Neumann), mixed, symmetry

plane, periodic and cyclic etc.

• However, the code operates on all boundary conditions in a consistent manner

forAll (boundaryConditions, i)

{

if (boundaryConditions[i].type() == fixedValue)

{

// Evaluate fixed value b.c.

}

else if (boundaryConditions[i].type() == zeroGradient)

{

// Evaluate zero gradient b.c.

}

else if (etc...)

}

Object Orientation and C++:An Introduction for CFD Specialists – p. 13



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Virtual Functions

Implementing Boundary Conditions

• The above pattern is repeated throughout the code. Introducing a new boundary

condition type is complex and error-prone: many distributed changes, no checking

• In functional code, the for-loop would contain an if-statement. When a new

boundary conditions is added, the if-statement needs to be changed (for all

operations where boundaries are involved)

• We wish to consolidate a boundary condition into a class. Also, the actual code

remains independent on how the b.c. does its work!

• Codify a generic boundary condition interface: virtual base class

class fvPatchField

{

public:

virtual void evaluate() = 0;

};

List<fvPatchField*> boundaryField;

forAll (boundaryField, patchI)

{

boundaryField[patchI]->evaluate();

}

Object Orientation and C++:An Introduction for CFD Specialists – p. 14



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Virtual Functions

Implementing Boundary Conditions

• Working with virtual functions

1. Define what a “generic boundary condition” is the through functions defined

on the base class: virtual functions

2. Implement the specific (e.g. fixed value) boundary conditions to answer to

generic functionality in its own specific way

3. The rest of the code operates only with the generic conditions

4. When a virtual function is called (generic; on the base class), the actual type

is recognised and the specific (on the derived class) is called at run-time

• Note that the “generic boundary condition” does not really exist: it only defines the

behaviour for all derived (concrete) classes

• Consequences

◦ Code will not be changed when new condition is introduced: no if-statement

to change: new functionality does not disturb working code

◦ New derived class automatically hooks up to all places

◦ Shared functions can be implemented in base class

Object Orientation and C++:An Introduction for CFD Specialists – p. 15



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Virtual Functions

template<class Type>

class fvPatchField

:

public Field<Type>

{

public:

//- Construct from patch, internal field and dictionary

fvPatchField

(

const fvPatch&,

const Field<Type>&,

const dictionary&

);

//- Destructor

virtual ˜fvPatchField();

virtual bool fixesValue() const { return false; }

virtual void evaluate() = 0;

};

Object Orientation and C++:An Introduction for CFD Specialists – p. 16



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Virtual Functions

template<class Type>

class fixedValueFvPatchField

:

public fvPatchField<Type>

{

public:

//- Construct from patch, internal field and dictionary

fixedValueFvPatchField

(

const fvPatch&,

const Field<Type>&,

const dictionary&

);

//- Destructor

virtual ˜fixedValueFvPatchField();

virtual bool fixesValue() const { return true; }

virtual void evaluate() {}

};

Object Orientation and C++:An Introduction for CFD Specialists – p. 17



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Generic Programming: Templates

What are Templates?

• Some operations are independent of the type on which they are being performed.

Examples: container (list, linked list, hash table), sorting algorithm

• C++ is a strongly type language: checks for types of all data and functions and

gives compiler errors if they do not fit

• Ideally, we want to implement algorithms generically and produce custom-written

code before optimisation

• Templating mechanism in C++

◦ Write algorithms with a generic type holder

template<class Type>

◦ Use generic algorithm on specific type

List<cell> cellList(3);

◦ Compiler to expand the code and perform optimisation after expansion

• Generic programming techniques massively increase power of software: less

software to do more work

• Debugging is easier: if it works for one type, it will work for all

• . . . but writing templates is trickier: need to master new techniques

• Many “CFD” operations are generic: lots of templating in OpenFOAM

Object Orientation and C++:An Introduction for CFD Specialists – p. 18



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Generic Programming: Templates

template<class T>

class List

{

public:

//- Construct with given size

explicit List(const label);

//- Copy constructor

List(const List<T>&);

//- Destructor

˜List();

//- Reset size of List

void setSize(const label);

//- Return subscript-checked element of List

inline T& operator[](const label);

//- Return subscript-checked element of constant LList

inline const T& operator[](const label) const;

};

Object Orientation and C++:An Introduction for CFD Specialists – p. 19



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Generic Programming: Templates

Bubble sort algorithm

template<class Type>

void Foam::bubbleSort(List<Type>& a)

{

Type tmp;

for (label i = 0; i < n - 1; i++)

{

for (label j = 0; j < n - 1 - i; j++)

{

// Compare the two neighbors

if (a[j+1] < a[j])

{

tmp = a[j]; // swap a[j] and a[j+1]

a[j] = a[j+1];

a[j+1] = tmp;

}

}

}

}

List<cell> cellList(55); // Fill in the list here

bubbleSort(cellList);

Object Orientation and C++:An Introduction for CFD Specialists – p. 20



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Object Orientation

Main Objects

• Computational domain

Object Software representation C++ Class

Tensor (List of) numbers + algebra vector, tensor

Mesh primitives Point, face, cell point, face, cell

Space Computational mesh polyMesh

Time Time steps (database) time

• Field algebra

Object Software representation C++ Class

Field List of values Field

Boundary condition Values + condition patchField

Dimensions Dimension set dimensionSet

Geometric field Field + mesh + boundary conditions geometricField

Field algebra + − ∗ / tr(), sin(), exp() . . . field operators

Object Orientation and C++:An Introduction for CFD Specialists – p. 21



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Object Orientation

Main Objects

• Linear equation systems and linear solvers

Object Software representation C++ Class

Linear equation matrix Matrix coefficients lduMatrix

Solvers Iterative solvers lduMatrix::solver

• Numerics: discretisation methods

Object Software representation C++ Class

Interpolation Differencing schemes interpolation

Differentiation ddt, div, grad, curl fvc, fec

Discretisation ddt, d2dt2, div, laplacian fvm, fem, fam

• Top-level code organisation

Object Software representation C++ Class

Model library Library eg. turbulenceModel

Application main() –

Object Orientation and C++:An Introduction for CFD Specialists – p. 22



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Summary

Object Orientation and Generic Programming Techniques in CFD

• Object-oriented approach handles complexity by splitting up the software into

smaller and protected units, implemented and tested in isolation

• Base unit: a class. Consists of data and functions that operate on it. Data is

protected from outside corruption: const access

• Classes allow introduction of user-defined types, relevant to the problem under

consideration. Examples: vector, field, matrix, mesh

• Virtual functions handle cases where a set of classes describe variants of related
behaviour through a common interface. Example: boundary conditions

• Templates: generic programming mechanism in C++. Use for algorithms which

are type-independent. Combines convenience of single code with optimisation of

hand-expanded code. Compiler does additional work: template instantiation

• C++ is a large and complex language; OpenFOAM uses it in full

• Question on efficiency in object orientation: resolved. However, care in

implementation and understanding of the language is required!

Object Orientation and C++:An Introduction for CFD Specialists – p. 23



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Learning C++

Further Info

• Extensive bibliography on C++ and object orientation

• OpenFOAM library as a source of quality examples of C++ in use

• Basic and advanced C++ courses offered by Wikki Ltd.

Standard References and Recommended Textbooks

• The C++ Primer, Stanley B. Lippman, Josee Lajoie, Barbara E. Moo. Addison

Wesley 2005

• The C++ Programming Language, Bjarne Stroustrup, Addison Wesley 2000

• The C++ Standard Library: A Tutorial and Reference, Nicolai M. Josuttis, Addison

Wesley 1999

• ISO Standard document ISO/IEC 14882:2003 Programming languages - C++:

Normative References: ISO/IEC 9899:1999, ISO/IEC 10646-1:2000

Learn it Well

• Effective C++: 55 Specific Ways to Improve Your Programs and Designs

(Professional Computing S.), Scott Meyers, Addison Wesley 1996

• C++ Templates: The Complete Guide, David Vandevoorde, Nicolai M. Josuttis,

David Vandervoorde, Addison Wesley 2002

Object Orientation and C++:An Introduction for CFD Specialists – p. 24


	Outline
	Background
	Object Orientation
	Classes: Protecting Your Data
	Classes: Protecting Your Data
	Classes: Protecting Your Data
	Classes: Protecting Your Data
	Value, Pointer, Reference
	Value, Pointer, Reference
	Operator Overloading
	Class Derivation
	Virtual Functions
	Virtual Functions
	Virtual Functions
	Virtual Functions
	Virtual Functions
	Generic Programming: Templates
	Generic Programming: Templates
	Generic Programming: Templates
	Object Orientation
	Object Orientation
	Summary
	Learning C++

