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Outline

Objective

• Review the best practice guidelines for the Finite Volume (FV) discretisation in

OpenFOAM and compare it with commercial CFD solvers

◦ Background on discretisation

◦ Default settings on dominantly hex and dominantly tet meshes

Topics

• Background

• Discretisation requirements: gradient scheme

• Discretisation requirements: convection term

• High resolution convection schemes

• Discretisation requirements: diffusion term

• Source and sink terms: discretisation and boundedness

• Stability and boundedness of boundary conditions

• Proposed default settings: hexahedral meshes

• Proposed default settings: tetrahedral meshes

• Summary
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Background

Best Practice Guidelines in CFD

• Commercial CFD codes offer robust set of default settings for the FVM: make the

code run on a bad mesh and by inexpert users

• Priority is in producing a result: substantial improvements in solution quality and

accuracy is possible

• . . . but only for an expert user!

• Default settings are extremely important and change only after large validation and

robustness testing campaigns

Default Settings in OpenFOAM

• . . . are practically non-existent: the code is written by experts and defaults are

changed on a whim

• Some tutorials have settings appropriate for the case, but not recommended in

general

• To remedy this, we need automatic test loops with 5000+ validation cases

• Improvements are in the pipeline: community effort and validation harness
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Discretisation

Finite Volume Discretisation

• Main concerns of FVM accuracy are mesh structure and quality and choice of

discretisation schemes

• Mesh structure determines the choice of appropriate gradient calculation algorithm

• For transport of bounded scalars, it is essential to use bounded differencing

schemes: both for convection and diffusion
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Gradient Scheme

Gauss Gradient Scheme

• Gradient calculated using integrals over faces

∫

VP

∇φ dV =

∮

∂VP

dsφ =
∑

f

sfφf

• Evaluate the face value of φ from cell centre values

φf = fxφP + (1− fx)φN

where fx = fN/PN

• Expression is second-order accurate only if φf is the face centre value

• Accurate on hexahedral meshes, but looses accuracy on tetrahedra: large

skewness error

Finite Volume Discretisation in OpenFOAM – p. 5



OpenFOAM Course, Uni Ghent 3-4/May/2016. Tracking 5568512168

Gradient Scheme

Least Squares Gradient: Second Order Accuracy On All Meshes

• Consider cell centre P and a cluster of points around it N . Fit a plane:

eN = φN − (φP + dN •(∇φ)P )

• Minimising the weighted error: second-order accuracy on all meshes

e2P =
∑

N

(wNeN )2 where wN =
1

|dN |

yields a second-order least-square form of gradient:

(∇φ)P =
∑

N

w2

N G
−1

•dN (φN − φP )

• G is a 3× 3 symmetric matrix:

G =
∑

N

w2

N dNdN
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Gradient Limiter

Cell- and Face-Limited Gradient

• Gradient reconstruction may lead to local over- or under-shoots in reconstructed

field:

minN (φN ) ≤ φP + dN •(∇φ)P ≤ maxN (φN )

• This is important for bounded variables, especially when gradients are used in

further discretisation or coupling terms

• Solution: based on the gradient, calculate min and max neighbourhood value and

apply gradient limiter to preserve bounds in cell centres
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Gradient Scheme

Notes on Implicit Divergence and Gradient Discretisation

• Block-coupled solver requires implicit discretisation of divergence and gradient

operator: positivity of off-diagonal coefficients

• Note: gradient operator on a scalar is a perfect transpose of the vector divergence

operator

• Matrix coefficients for Gauss gradient discretisation (and consistent Gauss

divergence) are positive on all valid meshes

• . . . but may be unstable or insufficiently accurate

• Implicit least squares gradient may be problematic: special practice has been

implemented to guarantee positivity of coefficients in the block-coupled p-U solver
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Convection Discretisation

Convection Operator

• Convection operator splits into a sum of face integrals (integral and differential

form) ∮

S

φ(n•u)dS =

∫

V

∇•(φu) dV =
∑

f

φf (sf •uf ) =
∑

f

φfF

where φf is the face value of φ and

F = sf •uf

is the face flux: measure of the flow through the face

• Simplest face interpolation: central differencing. Second-order accurate, but

causes oscillations

φf = fxφP + (1− fx)φN

• Upwind differencing: taking into account the transportive property of the term:

information comes from upstream. No oscillations, but smears the solution

φf = pos(F )φP + neg(F )φN
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Face Interpolation

Face Interpolation Scheme for Convection

• In order to close the system, we need a way of evaluating φf from the cell values

φP and φN : face interpolation

• In order to preserve the iteration sequence, the convection operator for bounded

(scalar) properties must preserve boundedness

• There exists a large number of schemes, trying to achieve good accuracy while

preserving boundedness: e.g. TVD, and NVD families: φf = f(φP , φN , F, . . .)

U (far upwind) C (central upwind) f (face) D (downwind)

flux

Φ

• Special differencing schemes for strictly bounded scalars: switching to UD when a

variable violates the bound. Example: Gamma01
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High Resolution Convection Schemes

Choice and Properties of High-Resolution Convection Differencing Schemes

• Based on the sufficient boundedness criterion (positive off-diagonal coefficients),

the only bounded convection discretisation scheme is Upwind Differencing (UD)

• For practical use, upwinding is polluted by diffusion-type discretisation error. It can

be shown that a convection discretisation scheme which is bounded and more
than first-order accurate must be non-linear: interpolation coefficients depend on

the variable

• Practical implementation of high-resolution schemes analyse local variation of the

solution via “extended molecule” or gradient-based discretisation. This can be

generalised

◦ Total Variation Limiting Schemes (TVD)

◦ Schemes based on the Normalized Variable Diagrams (NVD)

◦ Essentially Non-Oscillatory (ENO) and weighted ENO (WENO) schemes
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High Resolution Convection Schemes

TVD and NVD High-Resolution Convection Differencing Schemes

• Conventional high-resolution schemes define the boundedness window

• TVD and NVD schemes: function of consecutive gradients of the variable

r =
φC − φU

φD − φC

φ̃C =
φC − φU

φD − φU

• Diagrams define “region of boundedness” for a scheme, based on consecutive

gradients
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High Resolution Convection Schemes

Notes on High-Resolution Schemes

• Consider boundedness of your variable: what is the compromised between

boundedness and accuracy?

• Objective: achieve boundedness with minimal sacrifice of accuracy

• Do not use high-resolution schemes for unbounded variables

• Using high-resolution schemes for smoothly varying fields brings limited

improvement

• Note: vector (components) are not bounded variables

How to Pick Your High-Resolution Scheme

• In general-purpose CFD (no discontinuities), the difference in performance

between schemes is quite limited

• In cases that combine discontinuities and complex physics, other concerns arise:

cross-equation coupling
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Diffusion Discretisation

Diffusion Operator and Mesh Non-Orthogonality

• Diffusion term is discretised using the Gauss Theorem

∮

S

γ(n•∇φ)dS =
∑

f

∫

Sf

γ(n•∇φ) dS =
∑

f

γf sf •(∇φ)f

• Evaluation of the face-normal gradient. If s and df = PN are aligned, use

difference across the face. For non-orthogonal meshes, a correction term may be
necessary

P Nd

f
s k

∆

sf •(∇φ)f = |sf |
φN − φP

|df |
+ kf •(∇φ)f
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Diffusion Operator

Limiting Non-Orthogonal Correction in a Laplacian

• Decomposition of face gradient into “orthogonal component” and “non-orthogonal

correction” depends on mesh quality: mesh non-orthogonality is measured from

PN and sf

• Mathematically, a Laplacian is a perfect operator: smooth, bounded, self-adjoint.

Its discretisation yields a symmetric matrix

• In contrast, non-orthogonal correction is explicit, unbounded and unsigned

• Limited non-orthogonal correction: explicit part clipped to be smaller than its

implicit counterpart, base on the current solution

λ
|sf |

|df |
(φN − φP ) > kf •∇(φ)f

where λ is the limiter value

• Treatment of mesh non-orthogonality over 90o: mesh is formally invalid

◦ This corresponds to a Laplacian operator with negative diffusion

◦ Stabilise the calculation and remove non-orthogonal correction term

◦ Note: This is a “rescue procedure”: reconsider mesh and results!
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Source and Sink Terms

Handling of Source and Sink Terms

• “Source and sink terms need to be handled on their own merit”: simple

linearisation rules apply only without analysis of physics

• Linearisation of the source term

S(φ) = Su− Spφ Su, Sp ≥ 0

• The Sp sink term increases diagonal dominance and promotes boundedness

Sp = max

(
∂S(φ)

∂φ
, 0

)

• Rationale: illustration of The Curious Property of an Empty Box

• In many cases, sources are actually concealed transport terms. Example: regress

variable in combustion: the sink term is actually a flame propagation (advection)

∂(ρb)

∂t
+∇•(ρu b) = −ρSl|∇b|
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Boundedness and Boundary Conditions

Bounded Formulation of Convection and Diffusion Boundary Conditions

• Discretisation of convection and diffusion boundary conditions follows directly from

first principles: prescribed boundary value and boundary gradient appear as “cell”

source and sink terms

• Analysis equivalent to source term treatment applies; also consider boundedness

◦ Fixed value convection outlets (for scalars) directly lead to instability

◦ Value and gradient terms in the diffusion operator may lead either to loss of

stability or violation of boundedness

• Note: the pressure-velocity system may be more forgiving: pressure equation and

global mass conservation

Boundary Conditions in Compressible Flows

• . . . need to be examined strictly from physics standpoint!

• Method of characteristics: number of incoming and outgoing eigen-components

• Some formulations are physically impossible, eg. subsonic inlet with supersonic

outlet boundaries
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Discretisation Settings

Proposed Settings for Hexahedral Meshes

• Gradient scheme: Gauss or Gauss with limiters

• Convection scheme

◦ In initial settings or unknown mesh quality, always start with Upwind. If this

fails, there are problems elsewhere in case setup

◦ Momentum equation: for second order, recommend linear upwind. with

optional gradient limiters

◦ TVD/NVD schemes for bounded scalars (eg. turbulence); optionally, use

deferred correction formulation

• Diffusion scheme: settings depend on max non-orthogonality

◦ Below 60 deg, no special practice: Gauss linear corrected

◦ Above 70 deg, non-orthogonality limiter: Gauss linear limited 0.5

• In all cases, monitor boundedness of scalars and adjust convection and diffusion

schemes to remove bounding messages
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Discretisation Settings

Proposed Settings for Tetrahedral Meshes

• On tetrahedral meshes, cell neighbourhood is minimal: a tet has only 4 neighbours

• Skewness and non-orthogonality errors are larger and with substantial effect on

the solution: it is essential to re-adjust the discretisation

• Gradient scheme: least squares; in most cases without limiters

• Convection scheme

◦ On simple cases, use upwinding; nature of discretisation error changes due to

lack of mesh-to-flow alignment

◦ For highly accurate simulations, special (reconstructed) schemes are used

• Diffusion scheme: always with non-orthogonality limiters. Control limiter based on

boundedness messages on scalars
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Summary

Summary

• Discretisation settings in tutorials are a good starting point

• Variation in mesh structure (tetrahedral, hexahedral and polyhedral) means that no

single choice will work for all meshes

• In complex physics, consider physical properties of variables: boundedness and

conservation

• OpenFOAM is regularly set up for high accuracy rather than convergence to

steady-state: The fact that a solver converges does not necessarily mean the

results are correct (or physical!)

• “Special applications” like LES require additional care: energy conserving

numerics, low diffusion and dispersion errors

• Guidance provided for main mesh types: hex and tet. Polyhedral meshes use hex

settings

• Further complications may be introduced by moving mesh and topological changes
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